ISOLATION OF BIS(TRISDIMETHYLAMINOPHOSPHONIUMMETHYLIDE)- GOLD(I) CHLORIDE¹⁾

Yoshihisa YAMAMOTO

Faculty of Pharmaceutical Science, HIGASHI-NIPPON-GAKUEN UNIVERSITY, Ishikari-Tobetsu, Hokkaido 061-02

Bis(trisdimethylaminophosphoniummethylide)gold(I) chloride, $[(\text{Me}_2\text{N})_3\text{P-CH}_2\text{-Au-CH}_2\text{-P}(\text{NMe}_2)_3]\text{Cl, has been isolated and characterized by analytical and spectroscopic methods. It is stable in water and air. }$

Although preparation of trimethylmethylenephosphorane-metal complexes²⁾ and of triphenylmethylenephosphorane-metal complexes³⁾ has already been reported, tris(dimethylamino)methylenephosphorane-metal complex has never been described because the tris(dimethylamino)methylenephosphorane (L) is very unstable. We have now isolated 2/1 complex of bis(trisdimethylamino-phosphoniummethylide)gold(I) chloride (1) from L and triphenylphosphine-gold(I) chloride. Complex 1 was prepared by the reaction of (Me₂N)₃P=CH₂⁴⁾ (0.39 g, 2.2 mmol) and Ph₃PAuCl⁵⁾ (0.36 g, 0.727 mmol) in 20 ml dry benzene. The reaction is written as;

$$3(\text{Me}_2\text{N})_3\text{P=CH}_2 + (\text{C}_6\text{H}_5)_3\text{PAuCl} \longrightarrow [(\text{Me}_2\text{N})_3\text{P-CH}_2\text{-Au-CH}_2\text{-P(NMe}_2)_3]\text{Cl}.$$

$$\downarrow L$$

They were dissolved in benzene and stirred for approximately 1 day at r.t. under nitrogen. White precipitates formed were filtered, washed with dry benzene, and dried in vacuum. Yield: 0.33 g (77.3%), mp 109-111 °C. Anal. Calcd for $\rm C_{14}H_{40}N_6AuClP_2$ (MW 586.83): C, 28.65; H, 6.87. Found: C, 29.00; H, 6.86%. Complex 1 was soluble in water, benzene and chloroform. It was highly hygroscopic and was very stable both in water and air.

 1 H- and 13 C-NMR spectra of 1 have been measured in 1 D₂O at r.t.. The chemical shift (δPCH₂) of methylene protons was lower than that of 1 L and the coupling constant (1 J_{PC}) was much smaller than that of 1 L as is shown in Table. These spectra are similar to those of bis(triphenylphosphoniummethylide)-gold(I) chloride, 6 [(6 C₆H₅) $_3$ P-CH₂-Au-CH₂-P(6 C₆H₅) $_3$]C1 (2). It seems that the ylide is attached to the metal atom through the carbanionic donor atom. The coupling constant (2 J_{HCP}) of 1 is different from that of 2 , i.e., the coupling constant of 2 is larger than that 7 0 of the corresponding ylide. The 13 C-NMR spectrum of 1 L has been measured in 6 C₆D₆ at r.t. and the data are collected in Table.

Table.	1 _H -	and 1	-3 _{C-NMR}	data	of	gold	cor	nplex	l,	ylide	$\stackrel{\text{L}}{\sim}$
		and	l of rel	Lated	pho	sphor	rus	comp	lex	L	

$\mathtt{l}_{\mathtt{H}}$						
No	8NCH ₃	3 _{JHCNP}	δPCH ₂ (3)	$^2 J_{\mathrm{HCP}}$	Solvent	Standard
L'	2.95 d(18H)	11.0	2.35 d(3H)	15.5	CDC13	int-TMS
L	2.49 d(18H)	10.0	0.1 d(2H)	13.5	C6D6	int-TMS
1	2.68 d(36H)	9.75	0.99 d(4H)	13.5	D ₂ 0	int-DSS
	2.58 d(36H)	9.75	0.99 d(4H)	13.5	с _б р _б	int-TMS

13 _C						
No	δNCH ₃	² J _{CNP}	δPCH ₂ (3)	1 J $_{\mathrm{CP}}$		
L'	36.62 d	3.9	9.04 d	112.3	CDC13	CDC1 ₃
L	37.6 d	2.93	- 9.15 d	175.8	c _{ed} e	c ₆ D ₆
1	37.4 d	2.0	9.48 d	88.9	D ₂ 0	int-dioxane
	37.2 d	2.93	7.9 d	87.9	cpc13	CDC13

L': [(Me₂N)₃PCH₃]Br. Standard: internal TMS (δ =0), CDCl₃ (77.1), C₆D₆ (128.0), dioxane (67.4), DSS (0 ppm).

Acknowledgment The present work was partially supported by Science Research funds from the Hokkaido Kaihatsu.

References

- 1) Ylide-Metal Complexes V. Part IV: submitted Y. Yamamoto and H. Sugimoto, Bull. Chem. Soc. Jpn.
- 2) H. Schmidbaur, Acc. Chem. Res., 8, 62 (1975).
- 3) Y. Yamamoto and H. Schmidbaur, J. Organomet. Chem., <u>96</u>, 133 (1975).
- 4) (a) K. Issleib and M. Lischewski and A. Zschunke, Org. Magn. Reson., 5, 401 (1973).
 - (b) K. Issleib and M. Lischewski, J. Prakt. Chem., 312, 135 (1970).
- 5) C. Kowala and J. M. Swan, Aust. J. Chem., 19, 547 (1966).
- 6) Y. Yamamoto and Z. Kanda, Bull. Chem. Soc. Jpn., <u>52</u>, 2560 (1979).
- 7) H. Schmidbaur, H. Stuhler and W. Vornberger, Chem. Ber., $\underline{105}$, 1084 (1972).

(Received December 17, 1979)